
 

E-TRAINEE Module 2:  

Satellite Multispectral Images Time Series Analysis 

Theme 4:  Multitemporal classification exercise 

Reference dataset preparation 

To perform supervised land cover classification on high-resolution, multi-spectral, and multi-

temporal satellite data such as Sentinel-2 we need to prepare a reference dataset. This can be 

accomplished in various ways: drawing reference polygons directly from images, collecting data on the 

ground, or interpreting images in conjunction with other auxiliary data. In this tutorial, we'll opt for 

the latter approach. Reference dataset will be prepared in QGIS 3.28.2. We will use six Sentinel-2 

images acquired during 2022 (“S2_2022_classification_ready.tif”) and Google Satellite Images 

basemap to have data with higher resolution than Sentinel-2 for more accurate interpretation. Cloud 

masks prepared for each Sentinel-2 image were combined to prepare a new mask layer which excluded 

all pixels which were covered by clouds even once („mask.tif”). This ensures that our reference 

polygons won't overlap these cloud-covered areas. As auxiliary data we will also use the CORINE Land 

Cover (CLC) vector layer from 2018 (https://land.copernicus.eu/en/products/corine-land-cover), but 

we will verify its quality and validity. Data form the CORINE Land Cover were preprocessed for purpose 

of our exercise:  

1. Firstly data was intersected to our Area of Interest (AoI; “T4_aoi.shp”). 

2. CORINE Land Cover dataset contains very detailed information about land cover, up to 44 

classes for the most detailed level. For that reason classes which occur in the analyzed part of 

Giant Mountains were aggregated to nine classes which should be possible to classify using 

supervised classification (Tab. 1; “CLC_2018_Karkonosze_agg_UTM33n.gpkg”).  

Tab. 1 CORINE Land Cover classes aggregation scheme. 

CORINE Land Cover code CLC level 3 class name Class name in reference data 

112 Discontinuous urban fabric built-up area 

121 Industrial or commercial units 

211 Non-irrigated arable land fields 

231 Pastures meadows 

311 Broad-leaved forest broad-leaved forest 

312 Coniferous forest coniferous forest 

321 Natural grasslands natural grasslands 

322 Moors and heathland scrub 

324 Transitional woodland-shrub 

332 Bare rocks rocks 

512 Water bodies water 



 

Classes 141 –  Green urban areas, 142 – Sport and leisure facilities, 242 – Complex cultivation 

patterns, 243 – Land principally occupied by agriculture, with significant areas of natural vegetation, 

313 – Mixed forest and  333 – Sparsely vegetated areas, 412 – Peat bogs were not used due to their 

complexity which could be an obstacle during classification. On the other hand selected nine classes 

contains land cover objects which are in excluded classes eg. a mixed forest contains deciduous and 

coniferous trees.   

Since we have 6 images to classify we will use image chips to check if our polygons represent 

the same land cover class on each image and if clouds or shadows don't appear due to masking failure 

which makes our polygons unrepresentative. To prepare reference polygons several steps have been 

done: 

1. The AoI layer was modified using a 200 m inside buffer (to not select polygons close to the 

image borders). 

2. The regular grid of points aligned to pixel centers were generated with a 70 m gap between 

them (to avoid selecting polygons which are connected to each other, to reduce influence of 

spatial autocorrelation on accuracy assessment results). 

3. Using the function „Join attributes by location” attributes „Code_18” (CORINE program code) 

and „Class” from CLC were added to previously generated points. Points situated on class 

patches which are not used were removed. 

4. Around the remaining points a 14 m square shape buffer was created to obtain polygons with 

dimension 28x28 m which is close to 3 by 3 Sentinel-2 pixels. This size was chosen to ensure 

that during the classification process the algorithm will use spectral curves only from nine 

pixels, which centroids are located inside reference polygons. Our aim is to have quite 

homogenous and pure spectral signatures for each class. 

5. Processed polygons were used in a stratified random sampling process, where 150 polygons 

for each class were selected and saved as a new vector layer named 

„reference_classification_150perclass”. 

6. For layer „reference_classification_150perclass” a new attribute named „local_id” was added 

and filled using a field calculator by subsequent numbers. It was used to generate image chips 

in a similar way as it was introduced in Theme 2 exercise. 

 

 



 

7. Add one more attribute named „reference” where we will mark if a certain polygon will be 

used as a signature to classification or not. 

8. Use layer „reference_classification_150perclass” to generate image chips (see Theme 2 

exercise) which names will be created using attributes „local_id” and „class”. The R 

programming language will be needed to do this. 

 

Unset 

 
library(raster) 
library(sf)  
library(dplyr)  
 
image <- brick("S2_2022_classification_ready.tif") 
 
blue <- subset(image, c(1, 12, 23, 34, 45, 56)) 
green <- subset(image, c(2, 13, 24, 35, 46, 57)) 
red <- subset(image, c(3, 13, 25, 36, 47, 58)) 
nir <- subset(image, c(7, 18, 29, 40, 51, 62)) 
 
 
years <- as.Date(c( "2022-06-19", "2022-06-24", "2022-06-27", "2022-07-19",  "2022-
07-24", "2022-10-20")) 
 
points <- st_read("reference_classification_150perclass.gpkg") 
 
window_size <- 39 
 
for (i in seq(nrow(points))) { 
   
   
  point <- points[i, ] 
  c <- st_centroid(point) 
   
  point_cords <- st_coordinates(c)[1,] 
  row <- colFromX(green, point_cords[1]) 
  col <- rowFromY(green, point_cords[2]) 
   
  half_widow_size <- floor(window_size / 2) 
  col_cords <- (col - half_widow_size) : (col + half_widow_size) 
  row_cords <- (row - half_widow_size) : (row + half_widow_size) 
   
  output_name <- paste0("chips2/local_id == ", points$local_id[i], " ", 
points$class[i], ".png")  
   
  png(filename = output_name, width = 1920, height = 1080, pointsize = 16) 
   
  layout(matrix(c(rep(1, 10),0, 2, 2, 0, 3, 3, 0, 4, 4, 0, 0, 5, 5, 0, 6, 6, 0, 7, 
7, 0, 0, 8, 8, 0, 9, 9, 0, 10, 10, 0, 0, 11, 11, 0, 12, 12, 0, 13, 13, 0 ), nrow = 
5, byrow = TRUE), heights = c(0.25, 1, 1, 1, 1)) 



 

  par(mar = c(0, 0, 0, 0)) 
  plot.new() 
   
  text(0.5, 0.5, paste0("Local ID: ", points$local_id[i], ". Class: ", 
points$class[i], "."), cex = 1.4, font = 1) 
 
  par(mar = c(0,0,1,0)) 
   
   
   
  for (j in seq(6)){ 
     
    o_b1 <- raster(matrix(getValuesBlock(green[[j]], col = row_cords[1], nrows = 
window_size, row = col_cords[1], ncols = window_size),nrow = window_size, ncol = 
window_size, byrow = TRUE)) 
     
    o_b2 <- raster(matrix(getValuesBlock(red[[j]],col = row_cords[1], nrows = 
window_size, row = col_cords[1], ncols = window_size),nrow = window_size, ncol = 
window_size, byrow = TRUE)) 
     
    o_b3 <- raster(matrix(getValuesBlock(nir[[j]], col = row_cords[1], nrows = 
window_size, row = col_cords[1], ncols = window_size), nrow = window_size, ncol = 
window_size, byrow = TRUE)) 
     
     
    b_min <- 0.1 
    b_max <- 0.3 
    o_b1 <- (o_b1 - b_min) / (b_max - b_min) * 255 
     
    b_min <- 0.1 
    b_max <- 0.3 
    o_b2 <- (o_b2 - b_min) / (b_max - b_min) * 255 
     
    b_min <- 0.2 
    b_max <- 0.6 
    o_b3 <- (o_b3 - b_min) / (b_max - b_min) * 255 
     
     
    o_b1[o_b1 < 0] <- 0 
    o_b2[o_b2 < 0] <- 0 
    o_b3[o_b3 < 0] <- 0 
     
    par(mar = c(0,0,1,0)) 
    plotRGB(brick(o_b3, o_b2, o_b1), axes = FALSE, margins = TRUE, 
            xlab = "", ylab= "", main = years[j]) 
     
    symbols(x= 0.5, y=0.5, squares=0.07, inches=F, add=T, fg = "yellow") 
     
  } 
   



 

  for (j in seq(6)){ 
     
    o_b1 <- raster(matrix(getValuesBlock(green[[j]], col = row_cords[1], nrows = 
window_size, row = col_cords[1],ncols = window_size),nrow = window_size, ncol = 
window_size, byrow = TRUE)) 
     
    o_b2 <- raster(matrix(getValuesBlock(red[[j]], col = row_cords[1], nrows = 
window_size, row = col_cords[1], ncols = window_size), nrow = window_size, ncol = 
window_size, byrow = TRUE)) 
     
    o_b3 <- raster(matrix(getValuesBlock(blue[[j]], col = row_cords[1], nrows = 
window_size, row = col_cords[1], ncols = window_size), nrow = window_size, ncol = 
window_size, byrow = TRUE)) 
     
     
    b_min <- 0.1 
    b_max <- 0.3 
    o_b1 <- (o_b1 - b_min) / (b_max - b_min) * 255 
     
    b_min <- 0.1 
    b_max <- 0.3 
    o_b2 <- (o_b2 - b_min) / (b_max - b_min) * 255 
     
    b_min <- 0.1 
    b_max <- 0.3 
    o_b3 <- (o_b3 - b_min) / (b_max - b_min) * 255 
     
     
    o_b1[o_b1 < 0] <- 0 
    o_b2[o_b2 < 0] <- 0 
    o_b3[o_b3 < 0] <- 0 
     
    par(mar = c(0,0,1,0)) 
    plotRGB(brick(o_b2, o_b1, o_b3), axes = FALSE, margins = TRUE, 
            xlab = "", ylab= "", main = years[j]) 
    symbols(x= 0.5, y=0.5, squares=0.07, inches=F, add=T, fg = "yellow") 
  } 
   
  dev.off() 
   
  print(paste0(i, "/", nrow(points), " ", output_name)) 
   
} 

 

9. Generated image chips should represent our six Sentinel-2 images in True Color and False 

Color (CIR) composites. 

 



 

 
 

For classification purposes we want to choose 50 polygons for each class. As it was mentioned 

before we have randomly selected 150 polygons for each class to make it possible to choose which 

one met our requirements to be a good signature. Now we will create and save a new project named 

„Classification reference” in QGIS. 

 

 

 

Add the vector layer „reference_classification_150perclass” and raster layers „mask” (is combination 

of masks for each used Sentinel-2 images) and „S2_2022_classification_ready” (contains six  

Sentinel-2 images) to project. 

 

For better reference layer features management we add a plugin „Navtable”. 



 

 

We also add plugin QuickMapServices to have the possibility to use the Google Satellite basemap. 

 

 

 

 

 

 

 

 

 



 

Now we will add Google Satellite basemap. 

 

The next step is setting symbology for added layers. We will start from „mask” layer, in „symbology” 

tab in layer properties we should use render type as „Paletted/Unique values” and we will set black 

color for values from „0” to „5” (where „0” means that given pixel was masked on each image and „5” 

means that given pixel was masked only on one image) and we set transparent fill for value „6” (it 

means that given pixel was never masked). 

 

After setting the symbology of the „mask” layer we will go to the „S2_2022_classification_ready” layer. 

It contains spectral bands of six images, we will use them to visualize CIR composite for each date of 

acquisition.  



 

 

Our main materials during reference dataset preparation will be image chips but composites will be 
helpful in some cases. 
 

 
 
Before we will go to reference dataset interpretation we will set rules of labeling our vector layer and 
rules of filling values in attribute „reference”. It will make our work faster and easier. In the symbology 
tab in properties of the vector layer please set transparent fill and yellow color for stroke of our 
polygons. 



 

 
 
We will change the way of symbolization from „Single Symbol” to „Rule-based” and we will create 

expressions for each class. To do it we need to add each classes separately by clicking  icon.  
 

 
 



 

In pop-up window we should set name of our class, change symbol choosing a green fill and black 

stroke and by  clicking we can set proper expression. 
 
 

 
 
In the presented example the expression is prepared for coniferous forest class in case when attribute 
„reference” will be filled by word „yes”. To avoid filling attribute "reference" by typing we will add a 
dictionary of expression which we would use. It also allows us to avoid mistakes which can be made 
during typing. To prepare a dictionary we need to go to the „Attributes Form” tab in layer properties. 
For attribute „reference” in „Widget Type” section we need to select from the list option „Value Map”. 
 

 
 
Now we can add the desirable expressions: "yes" – means that the given polygon can be used as a 
reference in the classification, "no" – means that the given polygon cannot be used as a reference in 
the classification, "NULL" – means that the given polygon has not been verified yet. After making these 
settings when we will edit our vector layer to fill the attribute „reference” we will select those 
expressions from the list. In the next step, we should set expressions and symbols for the rest of 
classes. 
 



 

 
 
Now we will go to the „Labels”  tab to fix settings of labeling. Labels will be useful during polygon 
verification when a few polygons will be close to each other. 
 

 
 
We will use buffers around labels. 
 

 
 
Last thing which we need to set is a label placement. 
 



 

 
 
The above fixed settings will allow us to work more efficiently. If we verify the given polygon to be 
useful it will be symbolized as a green square, in case when we decide otherwise it will disappear 
because we set rules of symbolisation for the feature with expression „yes” and „NULL” in the 
„reference” attribute.  
To have up to date information about the number of selected polygons for each class we set automatic 
counting. 
 

 
 
Now we will use the Navtable plugin for going throughout our attribute table and verify subsequent 
polygons on the list. Please set sorting features ascending by „local_id” attribute. 
 

 



 

 
In the next window of Navtable plugin we will check only „Pan” option. When we click a single right 
arrow view will be moved and centered at the second feature in our table, clicking one more time will 
move the view to the next one feature and so on. Single left arrow is for moving in the opposite 
direction. 
 
 

 
 
Now we can start verifying polygons to check if their location is proper (pixels present one land cover 
class) and it's in accordance with the Corine Land Cover class assigned to it. We will need to open a 
project in QGIS which we organized up till now, Navtable plugin, attribute table (where we will mark if 
the given polygon is useful or not) and image chips (where we can verify if polygons are useful in each 
analyzed date). 
 

 
 



 

Here is an example of a polygon which location is not proper, but we can shift it by a few pixels and 
place it in the proper location or we can mark it as not useful and skip it (for that reason we have 
selected 150 polygons for each class to have a choice). In this example we will choose the first 
mentioned option. 
 

 
 
According to the Corine Land Cover our polygon should represent coniferous forest but when we look 
at CIR composite and Google Satellite basemap we can notice it is located in a place where there are 
only very young trees. 
 

 
 



 

We will move the polygon in the south-east direction where there is dense coniferous forest. 
 

 
 
Next example shows a lack of agreement between the class from Corine Land Cover and the actually 
presented land cover class. In this case we will choose option "no" in attribute "reference" and go 
further. 
 

 
 
 
 
 
 
 
 



 

Another reason to reject the polygon would be a visible artifact in the image, in this example visible on 
image acquired 24.06.2022. 

 
 
Sometimes the rejection reason may be failure of cloud masking. 

 



 

If you could not find 50 good samples for each class you can randomly select new polygons to verify 
and add it to our layer or you can use image interpretation and shift a few rejected before or draw new 
polygons. For that reason, we have created composites for all acquisition dates. After you obtain the 
right amount of proper polygons, you should select all good samples and export them as a new layer 
named “T4_reference_data.shp”. 
 
Proposed manner of reference data preparation allows us to look at all images at once using image 
chips but like always it is not the only way to realize such a task. 


